

LVT Test Report:

MIL-STD-981 Class S (+ Augmentation)

Date: 16th June 2020 **Page:** 1 of 33

Author

Michael D. Simpson

Business Director (Defence and Space)

Lars A. Gregersen

© Flux A/S

This document contains information proprietary to Flux A/S. The information, whether in form of text, schematics, tables, drawings or illustrations, must not be duplicated or used for purpose other than evaluation, or disclosed outside the recipient company or organisation without the prior, written permission of Flux A/S.

DOCUMENT CHANGE LOG

Change No.	Date	Initiator	Pages Affected	Short Description of Change
2	16/06/20	MS		Addition of Test Data

Document No: 08699019-2 Page: 2 of 33

TABLE OF CONTENTS

1.	INTR	ODUCT	ION5
2.	REFE	RENCE	DOCUMENTS5
3.	SAMP	LES DE	FINITION5
	3.1	Range	of component families for testing5
4.	TEST	METHO	DDS AND REQUIREMENTS6
	4.1	Screen	ing6
	4.2	Visual	Inspection6
		4.2.1	Visual Inspection Method6
		4.2.2	Visual Inspection Requirements6
	4.3	Solder	ability6
		4.3.1	Solderability method6
		4.3.2	Solderability requirements6
	4.4	Termin	nal strength7
		4.4.1	Terminal strength method
		4.4.2	Terminal strength requirements
	4.5	Induce	d Voltage7
		4.5.1	Induced voltage method7
		4.5.2	Induced voltage requirements7
	4.6	Dielect	ric withstanding voltage8
		4.6.1	Dielectric withstanding voltage method8
		4.6.2	Dielectric withstanding voltage requirements8
	4.7	Electric	cal Characteristics8
		4.7.1	Electrical Charateristics Test Method8
		4.7.2	Electrical Charactristics Requirements8
	4.8	Resista	ance to solvent8
		4.8.1	Resistance to solvent method8
		4.8.2	Resistance to solvent requirements9
	4.9	Vibrati	on9
		4.9.1	Vibration test method9
		4.9.2	Vibration test requirements
	4.10	Mechai	nical Shock10
		4.10.1	Mechanical shock method
	4.11	Life Te	st
		4.11.1	Life Test Method
		4.11.2	Life Test Requirements
	4.12	Insulat	cion Resistance
		4.12.1	Insulation Resistance method
		4.12.2	Insulation Resistance requirements

Document No: 08699019-2

4 of 33

Page:

	4.13	Internal Mechanical Examination (Destructive Physical Analysis(DPA))	10
		4.13.1 DPA Method	10
		4.13.2 DPA Requirements	11
	4.14	Partial Discharge	11
		4.14.1 Partial Discharge Method	11
	4.15	Moisture resistance	11
		4.15.1 Moisture resistance method	11
		4.15.2 Moisture resistance requirements	11
	4.16	Overload	11
		4.16.1 Overload method	11
		4.16.2 Overload requirements	11
		4.16.3 Overload step test	11
		4.16.4 Overload step test requirements	12
	4.17	Thermal Shock	12
		4.17.1 Thermal shock method	12
		4.17.2 Thermal shock requirement	12
5.	TEST	FLOW	13
	5.1	Test Facilities	15
6.	OBSE	RVATIONS	15
	6.1	Minor Observations	15
	6.2	Major / Critical Observations	15
	6.3	Failure Analysis	
_	CONC	SHISTON	4-

1. INTRODUCTION

This document reports the LOT Verification Testing (LVT) as per FT 08699014^(RD9) of critical Flight Parts (CLASS S) components as defined MIL-STD-981^(RD3), this testing has been augmented in agreement with ESA. The components under test are defined in section 3.1

2. REFERENCE DOCUMENTS

Ref.	Document	Title
RD1	MIL-PRF-27	General Specification for Transformers and Inductors
RD2	MIL-STD-202	Test Method Standards – Electronic and Electrical Component Parts
RD3	MIL-STD-981	Design, Manufacturing and Quality Standards for Custom Electromagnetic Devices for Space Applications
RD4	FT 08690020	Generic Specification Magnetic Components for Space Applications
RD5	FT 08690019	Process Identification Document
RD6	FT 08711502	Screening Test Procedure for Transformers and Inductors
RD7	FT 08783001	Nonconforming Product
RD8	ECSS-Q-ST-70-08	Manual soldering of high-reliability electrical connections
RD9	FT 08699014	LVT Test procedure

3. SAMPLES DEFINITION

3.1 Range of component families for testing

The magnetic components covered by this lot acceptance test procedure are:

Evaluation Sample	Flux Part No	Description	Quantity
L1	14413001-1-S	ESA 5Kw Transformer	6
L2	12391005-1-S	ESA 5Kw Inductor	4
L3	12781001-1-M	Encapsulated power inductor	4
L4	12781002-1-M	Encapsulated power inductor	4
L5	12781003-1-M	Encapsulated power inductor	4
L6	12781004-1-M	Encapsulated power inductor	4
L7	12781005-1-M	Encapsulated power inductor	4
L8	12781006-1-M	Encapsulated power inductor	4
L9	12781007-1-M	Encapsulated power inductor	4

Table 3-1 LAT Samples

Document No: 08699019-2 Page: 5 of 33

4. TEST METHODS AND REQUIREMENTS

4.1 Screening

Screening shall be performed in accordance with FT 08711502^(RD6), prior to the start of LAT testing.

4.2 Visual Inspection

4.2.1 Visual Inspection Method

Visual inspection shall be aided by magnification appropriate to the size of inspection item, between 4x to 10x magnifications. Additional magnification shall be used to resolve suspected anomalies or defects.

4.2.2 Visual Inspection Requirements

4.2.2.1 External

The components shall be examined to verify that the materials, external design and construction, physical dimensions, marking and workmanship are in accordance with the requirements defined in the relevant procedures and the reference documents given in section 2 of this procedure

4.2.2.2 Post-test

No more than 10% of the surface shall have pooling, flaking, chipping, cracking, crazing or other impairment of the protective coating. There shall be no leakage of the filling material, no evidence of other physical damage, such as cracks, bursting, or bulging of the case or corrosion affecting the mechanical or electrical operation of the samples in accordance with MIL-PRF-27 (RD2), section 3.24.

4.3 Solderability

Solderability shall be performed on samples with PCB terminals. Solderability is not applicable for flying leads.

4.3.1 Solderability method

Solderability shall be tested by the "Soldering iron method", specified in MIL-STD-202 $^{(RD2)}$, method 208. By using the "Soldering iron method" no separate test for resistance to soldering heat will be performed, and the purpose of this test will be:

- a) Qualification of the component resistance to heat when soldered with a soldering iron.
- b) Qualification of the solderability of the component terminals.

Practical test method to be applied:

- Minimum two of each type of terminals shall be tested
- A standard soldering iron shall be used. Tip temperature shall be 320 °C +/- 10 °C
- Solder alloy shall be Sn63Pb37 and flux shall be type RMA.
- The solder tip shall be held on the middle of the terminal for 2 Sec +/- 0,5 sec
- Solder iron tip shall be calibrated to reach 280°C on the calibration wire in 2 sec

4.3.2 Solderability requirements

Document No: 08699019-2 Page: 6 of 33

The pins shall be visually inspected. Any termination that has less than 5% of the examination area dewetted, nonwetted or with pinholes will be accepted. Inspection is in accordance with MIL-STD-202 (RD2), method 208.

4.4 Terminal strength

Up to a maximum of 4 identical terminals per sample are to be subjected to terminal strength testing. Terminal strength is not applicable for flying leads.

4.4.1 Terminal strength method

Terminal strength shall be performed by applying a force in the direction of the axis of the termination. The force shall be gradually applied up to 10N and this force shall be held for between 5 to 10 seconds in accordance with MIL-PRF-27 $^{(RD1)}$, section 4.7.7.

4.4.2 Terminal strength requirements

There shall be no evidence of loosening or rupturing of terminals, or other mechanical damage, in accordance with MIL-PRF-27 (RD1), section 4.7.7.

4.5 Induced Voltage

4.5.1 Induced voltage method

Wound toroids manufactured on a winding machine shall be subjected to a voltage sufficient to cause twice the rated voltage across any winding or 300V for wires < 0.250mm and 500V for wires ≥ 0.250 mm whichever is greater

This test will be performed as surge test with 10 pulses.

4.5.2 Induced voltage requirements

During this test the magnetic device shall be inspected for evidence of continuous arcing, flashover, breakdown of insulation, and abrupt changes in the input current in accordance with MIL-PRF-27 (RD1), section 4.7.10. Means shall be provided to indicate fluctuations of input current.

Document No:

Page:

08699019-2

4.6 Dielectric withstanding voltage

4.6.1 Dielectric withstanding voltage method

The dielectric withstanding voltage test, serves to determine whether insulating materials and spacing between different parts in the magnetic component are adequate.

The test consists of the application of an AC voltage higher than rated voltage for a specific time between mutually insulated portions of a component part or between insulated portions and ground.

The test shall be applied between each winding and shield, and all of the other windings and shields connected to the core (if accessible). Alternatively the test shall be applied between each winding and shield, and each of the other windings, shields and core (if accessible).

Atmospheric pressure applies

terrosprierio pressure applies	,
Voltage	500 V rms.
Max. Current	0.10 mA ± 0.02 mA
Ramp Time	Max. 1 s
Dwell Time	Min. 5 s
Frequency	50 Hz

4.6.2 Dielectric withstanding voltage requirements

During and post test the magnetic device shall be inspected for evidence of arcing, flashover, breakdown of insulation, and damage in accordance with MIL-PRF-27 (RD1), section 4.7.9.1.

4.7 Electrical Characteristics

4.7.1 Electrical Charateristics Test Method

The applicable electrical measurements as specified in the detail specification, shall be measured in accordance with FT 08711502 (RD6) and as agreed in the baseline for each part.

4.7.2 Electrical Charactristics Requirements

The measured electrical characteristics shall fall within the limits specified in the detail specification, including any formally agreed deviation. Drift shall be calculated with reference to the first measurement after production screening

4.8 Resistance to solvent

4.8.1 Resistance to solvent method

Components shall be tested in accordance with MIL-PRF-27 $^{(RD1)}$, using the methods detailed MIL-STD-202 $^{(RD2)}$, method 215.

The following shall reply:

- The marked portion of the components shall be brushed.
- The solvents tested shall be:
 - Demineralized water
 - 2-propanol

Document No: 08699019-2 Page: 8 of 33

4.8.2 Resistance to solvent requirements

There shall be no evidence of mechanical damage and the markings shall remain legible. The paint or exterior finish shall not soften, peel, or show other signs of deterioration.

4.9 **Vibration**

MIL-PRF-27(RD1) states that MIL-STD-202(RD2) method 201 or 204 be used. Flux feels that these two options form an unrealistic scenario, therefore we elected to increase the vibration testing and use method 214. The purpose of which is:

'This test is conducted for the purpose of deteremining the ability of the component parts to withstand the dynamic stress exerted by random vibration applied between upper and lower frequency limits to simulate the vibration experienced in various service field environments'

4.9.1 Vibration test method

The components shall be mounted on a PCB and a vibration fixture and exposed to random vibration according to MIL-STD-202 (RD2), method 214, condition H.

Test conditions are as follows: random vibration

Vibration level: 30 g rms. Duration: 5 minutes per axis.

Level applied to fixture.

Axis	Frequency	Level	G rms.	Duration per				
	Range (Hz)		Acceleration	axis				
	20 -100	+ 6 dB/oct						
X,Y,Z	100-1600	0.5 g ² /Hz	30	300 sec.				
	1600-2000							

Table 4-3 Vibration test level

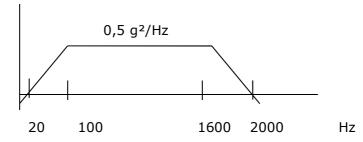


Figure 9-4 Vibration test PSD spectrum

Document No: 08699019-2 9 of 33

Page:

4.9.2 Vibration test requirements

There shall be no evidence of physical damage in accordance with MIL-PRF-27(RD1), section 4.7.16. Visual inspection shall be performed after vibration testing.

4.10 Mechanical Shock

4.10.1 Mechanical shock method

The components shall be mounted on a PCB and a vibration fixture. The components shall be exposed to three shocks in each direction of the three perpendicular axes.

Due to the high demands of space industry, Flux has elected to increase the demands specified by MIL-PRF-27(RD1), which states the units be tested accordance with MIL-STD-202(RD2), method 213 condition I which has a peak value of 100G shock with a sawtooth shape.

To this end, Flux has decided that the peak value of the shocks is to be 500G with a half sine shape in accordance with MIL-STD-202(RD2), method 213 condition D Mechanical shock requirements.

4.11 Life Test

4.11.1 Life Test Method

Life testing based on that specified in MIL-PRF-27 (RD1). The testing detailed below is based on the units being temperature class S.

4.11.1.1 Accelerated +2 Temperature classes

Components be tested in accordance with MIL-STD-202(RD2). Life test shall be performed by exposing the components to 5 cycles a week for 6 weeks (Total 1008 Hours). Four of the cycles consist of 20 hours at 125°C ±5°C with operating conditions applied and 3 hours at room temperature.

The fifth cycle consist of 68 hours at 85 °C±5°C with operating conditions applied and 3 hours at room temperature.

The transition times are to be 30 min \pm 5 min each. During transition the samples shall be applied with operating conditions.

4.11.2 Life Test Requirements

There shall not be any evidence of physical damage in accordance with MIL-PRF-27(RD2).

4.12 Insulation Resistance

4.12.1 Insulation Resistance method

At specified voltage with insulation resistance (IR) of 7,500 megohms minimum.

4.12.2 Insulation Resistance requirements

There shall not be any evidence of physical damage in accordance with MIL-PRF-27(RD2).

4.13 Internal Mechanical Examination (Destructive Physical Analysis(DPA))

4.13.1 DPA Method

08699019-2

Components are to be moulded into adequate material, and cut and polished. The cut planes shall include solderings if any, and the core. Multiple cutplanes may be necessary. The components are to be visually inspected, and photographed.

4.13.2 DPA Requirements

There shall not be any evidence of physical damage of core, wires, coilformer, solderings, and insulation materials or impregnation material.

4.14 Partial Discharge

Transformer only

4.14.1 Partial Discharge Method

a. Magnitude of test voltage: 533Vac peak

b. Frequency: 50Hz

c. Test duration: 10 minutes min (after ramp up / before ramp down)

d. Background noise: <2pC

e. Pressure: <2Pa

f. Pass criteria: no pulse (≥ 5pC) during the test duration shall be observed

4.15 Moisture resistance

4.15.1 Moisture resistance method

Moisture resistance is to be performed by exposing the components to a number of temperature and humidity cycles as specified in MIL-STD-202 (RD2), method 106F. The components are not to be polarised or loaded during humidity cycles. Cycle steps 7a (-10°C conditioning) and 7b (vibration) are not applicable.

4.15.2 Moisture resistance requirements

There shall be no evidence of physical damage, or corrosion affecting the mechanical or electrical operation of the component, in accordance with MIL-PRF-27^(RD1), section 4.7.20.

4.16 Overload

4.16.1 Overload method

Overload test have been performed by applying operating conditions as specified for each component, with the following exceptions:

- Power is to be at 112% of nominal power
- Temperature: Increase 1 temperature class

The operating conditions were applied for at least 48h in accordance with in accordance with MIL-PRF-27(RD1), section 6.11.

4.16.2 Overload requirements

There shall be no evidence of physical damage in accordance with MIL-PRF-27^(RD1), section 3.24.

4.16.3 Overload step test

Overload test have been performed by applying operating conditions as specified for each component, with the following exceptions:

• Power is to be at 110% of nominal power, increasing in 10% increments every 30 minutes upto 180% and the 5% increments upto 200%

Document No:

Page:

08699019-2 11 of 33

• Temperature: Normal temperature class

4.16.4 Overload step test requirements

This test may be destructive, units are to be examined post test.

4.17 Thermal Shock

4.17.1 Thermal shock method

Thermal shock shall be performed using an environmental chamber. The following test conditions shall be used; if not otherwise specified in the Order Baseline Matrix.

Parameter	Requirement
Minimum temperature	- 55°C ±3°C
Maximum temperature	+120°C ±3°C
Transition temperature	Room Temperature
Dwell time at min. and max. temperature	30 min.
Dwell time at transition temperature	4 min.
Transfer time	< 5 min.
Number of cycles	100

The first five cycles shall run continuously. After five cycles, the test may be interrupted after the completion of any full cycle, and the components allowed to return to ambient room temperature before testing is resumed.

4.17.2 Thermal shock requirement

The components shall be examined for evidence of leakage and other visible damage according to MIL-PRF-27(RD1) section 3.24.

Document No: 08699019-2 Page: 12 of 33

5. **TEST FLOW**

Test performed based the requirements of MIL-STD-981^(RD3), several tests have been augmented above those specified. This LOT Acceptance Testing is destructive and the samples are not suitable for flight use.

Group and Test			1	44130	001-1	-S		12391005-1-S				1	127810	001-1-	М	1	L27810	005-1-	12781006-1-M				
	Group and Test	004	005	011	002	013	012	006	007	003	004	Α	В	С	D	Α	В	С	D	Α	В	С	
	Electrical characteristics	\checkmark	√	✓	✓			\checkmark	✓			\checkmark	✓			\checkmark	✓			\checkmark	\checkmark		
	Resistance to soldering heat	N	I/A	N	l/A			N	/A			\checkmark	✓			\checkmark	✓			\checkmark	✓		
	Terminal Strength	N	I/A	N	I/A			N	/A			N	/A			N	/A			N	/A		
	Moisture Resistance	\checkmark	\checkmark					\	\checkmark			\checkmark	\checkmark			\checkmark	✓			\checkmark	\checkmark		
	Vibration	\checkmark	✓					(1)	(1)			\checkmark	✓			\checkmark	✓			✓	✓		
	Mechanical Shock	\checkmark	✓					(1)	(1)			✓	✓			\checkmark	✓			✓	✓		T
	Electrical characteristics	\checkmark	✓					✓	✓			✓	✓			\checkmark	✓			✓	✓		T
-	Thermal Cycling (100 cycles)	\checkmark	✓					✓	✓			✓	✓			✓	✓			✓	✓		
	Overload			(1)	✓																		
Group	Overload – Step test				✓																		
0	Induced Voltage	\checkmark	✓		\checkmark			✓	✓			\checkmark	✓			\checkmark	✓			✓	✓		Т
	Dielectric Withstanding Voltage (at atmospheric pressure)	\checkmark	✓		\checkmark			✓	✓			✓	✓			✓	✓			✓	✓		T
	Insulation Resistance	\checkmark	✓		\checkmark			✓	✓			✓	✓			✓	✓			✓	✓		T
	Electrical characteristics	\checkmark	✓		\checkmark			✓	✓			\checkmark	✓			✓	✓			✓	✓		T
	Visual Inspection	\checkmark	✓		\checkmark			✓	✓			✓	✓			✓	✓			✓	✓		Т
	Partial Discharge (Transformer only)	\checkmark	✓		✓			N	/A			N	/A			N	/A			N	/A		T
	Dielectric Withstanding Voltage (60seconds) ?	\checkmark	✓		\checkmark			\checkmark	✓			\checkmark	✓			\checkmark	✓			\checkmark	\checkmark		T
	Visual and Mechanical Inspection (internal)	✓						✓				✓				✓				✓			Т
	Solderability					✓	\checkmark			\checkmark	✓			\checkmark	✓			\checkmark	√			✓	T
	Resistance to solvents					✓	✓			✓	✓			✓	✓			\checkmark	✓			\checkmark	Т
	Electrical characteristics					(1)	✓			✓	✓			\checkmark	✓			\checkmark	✓			\checkmark	Т
	Temperature Rise			To be c	alculate	d				N	I/A			N	/A			N	/A			ľ	V/A
ıp 2	Life (1000 + temperature classes)			\checkmark			\checkmark			✓	✓			\checkmark	\checkmark			\checkmark	✓			✓	T
Group	Induced Voltage			\checkmark			✓			✓	✓			✓	✓			\checkmark	✓			√	Т
U	Dielectric Withstanding Voltage (at reduced voltage)			\checkmark			✓			✓	✓			\checkmark	\checkmark			\checkmark	✓			\checkmark	Т
	Electrical characteristics			✓			✓			✓	✓			✓	✓			\checkmark	√			✓	T
	Partial Discharge (Transformer only)			✓			✓			N	I/A			N	/A			N	/A			l l	V/A
	Visual Inspection			✓			✓			√	√			√	\checkmark			✓	✓			\checkmark	Т

<u>Key:</u>

Pass

Passed with comments See section 6.1

Fail See section 6.2

This test is required, however it is Not Applicable for this part type

In accordance with Test procedure this test is not required for this S/N

Document No: 08699019-2 Page:

	Crawn and Took	13	27810	07-1-	М	1	.27810	002-1-1	М	1	.27810	03-1-	М	1	.27810	04-1-	М
	Group and Test	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D
	Electrical characteristics	✓	\checkmark			✓	✓			✓	✓			\checkmark	✓		
	Resistance to soldering heat	✓	✓			✓	✓			✓	✓			✓	✓		
	Terminal Strength		/A			N,	/A			N,	/A			N	/A		
	Moisture Resistance	\checkmark	\checkmark			✓	\checkmark			✓	\checkmark			\checkmark	\checkmark		
	Vibration	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Mechanical Shock	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Electrical characteristics	✓	✓			✓	✓			✓	✓			✓	✓		
н	Thermal Cycling (100 cycles)	✓	✓			✓	✓			✓	\checkmark			\checkmark	✓		
l dr	Overload																
Group	Overload – Step test																
	Induced Voltage	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Dielectric Withstanding Voltage (at atmospheric pressure)	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Insulation Resistance	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Electrical characteristics	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Visual Inspection	✓	✓			✓	✓			✓	✓			✓	✓		
	Partial Discharge (Transformer only)	N,	/A			N/A				N,	/A			N,	/A		
Me Eld Over Discourse of the Control	Dielectric Withstanding Voltage (60seconds) ?	✓	✓			✓	✓			✓	✓			\checkmark	✓		
	Visual and Mechanical Inspection (internal)	✓															
	Solderability			\checkmark	✓			✓	✓			✓	✓			√	√
	Resistance to solvents			\checkmark	✓			✓	✓			\checkmark	✓			✓	✓
	Electrical characteristics			✓	✓			✓	✓			✓	✓			\checkmark	✓
7	Temperature Rise			N/	'A			N,	/A			N		I/A			
유	Life (1000 + temperature classes)			\checkmark	✓			\checkmark	✓			\checkmark	\checkmark			\checkmark	\checkmark
Group	Induced Voltage			\checkmark	✓			\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark
_	Dielectric Withstanding Voltage (at reduced voltage)			✓	✓			✓	✓			\checkmark	✓			✓	\checkmark
	Electrical characteristics			\checkmark	✓			\checkmark	\checkmark			\checkmark	√			✓	\checkmark
	Partial Discharge (Transformer only)			N/	'A			N,	/A			N	I/A			N	I/A
	Visual Inspection			✓	√			√	√			\checkmark	√			\checkmark	\checkmark

Key:

Pass

Passed with comments
See section 6.1

Fail See section 6.2 This test is required, however it is Not Applicable for this part type

In accordance with Test procedure this test is not required for this S/N

5.1 Test Facilities

All testing except for vibration and mechanical shock was performed at Flux's facilities in Asnaes, Denmark, Vibration and mechanical shock was performed at Force's facilities in Horsholm, Denmark.

6. OBSERVATIONS

6.1 Minor Observations

1. Life Test – Due to a fault in the setup of the life test one unit was overheated and shorted. As a result one of the units scheduled for overload testing was redirected to subgroup 2.

6.2 Major / Critical Observations

1. Vibration – the 12391005-1-S that were subjected to vibration and shock showed damage. .

6.3 Failure Analysis

As a result of the failure detailed in section 6.2(1) the part was analyzed. The analysis showed that due to the design of the housing and the coil being fixed at only 1 end of the unit the ferrite core and coil moved within the housing.

6.3.1.1 Correction Action

The design of the inductor has been updated to include a recessed area in which the core is seated. This will eliminate the lateral travel of the core

7. CONCLUSION

With the exceptions detailed in section 6.2 and in accordance FT 08699314^(RD9), the LOT verification testing is complete.

The following parts have been selected for formal ESCC qualification using FT08699016

Flux Part No	Description	Quantity	Description
14413001-1-S	ESA 5Kw Transformer	5	
12391005-1-S	ESA 5Kw Inductor	5	Updated design (See 6.3.1.1)
12781001-1-M	Encapsulated power inductor	5	
12781007-1-M	Encapsulated power inductor	5	

Document No: 08699019-2 Page: 15 of 33

TEST DATA 8.

L1 - 14413001-1-S 8.1

TECT	Electrical C	haracteristics	Moisture	Vibuation	Mechanical	Electrical Cha	aracteristics	Thermal	Overload	
TEST	Inductance ⁽¹⁾	Insul MOhm	Resistance	Vibration	Shock	Inductance (1)	Insul MOhm	Cycling	Overload	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16	
	Max; 66,1					Max; 66,1				
LIMITS	Min: 44,1	5000				Min: 44,1	5000			
S/N 004	32,5	✓	✓	✓	✓		✓	✓		
S/N 005	32,7	✓	✓	✓	✓		✓	✓		
S/N 011	34,5	✓							(1)	
S/N 002	47,6	✓							✓	
S/N 013										
S/N 012										

Note 1: Units out of inductance during screening

	TEST	Overload Step	Induced	DWV	Insulation	Electrical Cha	aracteristics	Visual	Partial	DWV
	EST	Test	Voltage	DWV	Resistance	Inductance (1)	Insul MOhm	Inspection	Discharge	DVVV
CON	IDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	§ 5,14	500Vac 60s
						Max; 66,1				
L	IMITS					Min: 44,1	5000			
S/N	004		✓	✓	✓		✓	✓	✓	✓
S/N	005		✓	✓	✓		✓	✓	✓	✓
S/N	011									
S/N	002	✓	✓	✓	✓	47,15	✓	✓		
S/N	013									
S/N	012									

Note 1: Units out of inductance during screening

Document No: 08699019-2 16 of 33

Page:

14413001-1-S

т	EST	Visual	DPA	Resistance	Electrical Cha	racteristics	Temperature	Life Test	Induced	DWV (reduced
•	LJI	Inspection	DFA	to Solvents	Inductance ⁽¹⁾ µH	Insul MOhm	Rise	LITE TEST	Voltage	voltage)
CON	IDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V		§ 5,11	§ 5,5	375Vac 5s
					Max; 66,1					
	IMITS				Min: 44,1	5000				
S/N	004	✓	✓							
S/N	005	✓								
S/N	011							✓	✓	✓
S/N	002	✓								
S/N	013		✓	✓	34,2	✓	To be calculated	(1)		
S/N	012		✓	✓	37,8	✓		✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	aracteristics	Partial	Visual	
IESI	Inductance ⁽¹⁾	Insul MOhm	Discharge	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,14	§ 5,2	
	Max; 66,1				
LIMITS	Min: 44,1	5000			
S/N 004					
S/N 005					
S/N 011	34,5	✓	✓	✓	
S/N 002					
S/N 013					
S/N 012	37,3	✓	✓	✓	

Note 1: Units out of inductance during screening

Document No: 08699019-2

Page: 17 of 33

8.2 L2 - 12391005-1-S

TECT	Electrical C	haracteristics	Moisture	Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
TEST	Inductance ⁽¹⁾	Insul MOhm	Resistance	VIDIACIOII	Shock	Inductance ⁽¹⁾ µH	Insul MOhm	Cycling	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max; 27,3					Max; 27,3			
LIMITS	Min: 24,7	5000				Min: 24,7	5000		
S/N 006	32,6	✓	✓	(1)	(1)	32,7	✓	✓	
S/N 007	31,8	✓	✓	(1)	(1)	31,9	✓	✓	
S/N 003									
S/N 004									

Note 1: Units out of inductance during screening

TEST	Overload Step	Induced	DWV	Insulation	Electrical Cha	aracteristics	Visual	Partial	DWV
1231	Test	Voltage	2000	Resistance	Inductance ⁽¹⁾ µH	Insul MOhm	Inspection	Discharge	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	§ 5,14	500Vac 60s
					Max; 27,3				
LIMITS					Min: 24,7	5000			
S/N 006		✓	✓	✓	32,7	✓	✓		✓
S/N 007		✓	✓	✓	31,9	✓	✓		✓
S/N 003									
S/N 004									

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page:

12391005-1-S

TECT	Visual	DDA	Resistance	Electrical Cha	racteristics	life Teet	Induced	DWV
TEST	Inspection	DPA	to Solvents	Inductance ⁽¹⁾	Insul MOhm	Life Test	Voltage	(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
	0,250V			Max; 27,3				
LIMITS	100kHz N1(1-2)			Min: 24,7	5000			
S/N 006	✓	✓						
S/N 007	✓							
S/N 003			✓	32,4	✓	✓	✓	✓
S/N 004			✓	32,5	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Ele	ctrical Cha	aracteristics	Visual
1531	Indu	ctance ⁽¹⁾ µH	Insul MOhm	Inspection
CONDITIONS	0,250V 100kHz N1(1-2)		500V	§ 5,2
	Max;	27,3		
LIMITS	Min:	24,7	5000	
S/N 006				
S/N 007				
S/N 003		32,4	✓	✓
S/N 004		32,5	✓	✓

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page:

8.3 L3 - 12780101-1-M

TECT	Electrical C	haracteristics	Moisture	Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
TEST	Inductance ⁽¹⁾	Insul MOhm	Resistance		Shock	Inductance (1)	Insul MOhm	Cycling	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	1,58	✓	✓	✓	✓	1,63	✓	✓	
Sample B	1,59	✓	✓	✓	✓	1,62	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced	DWW	Insulation	Electrical Cha	aracteristics	Visual	DWV
TEST	Test	Voltage	DWV	Resistance	Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	1,66	✓	✓	✓
Sample B		✓	✓	✓	1,64	✓	✓	✓
Sample C								
Sample D								

12780101-1-M

TECT	Visual	DDA	Resistance	Electrical Cha	racteristics	life Teet	Induced	DWV (reduced voltage)
TEST	Inspection	DPA	to Solvents	Inductance (1) µH	Insul MOhm	Life Test	Voltage	
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓	✓						
Sample B	✓							
Sample C			✓	1,55	✓	√	√	✓
Sample D			✓	1,56	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	aracteristics	Visual
1531	Inductance ⁽¹⁾ Insul MOhm		Inspection
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2
LIMITO	Max;		
LIMITS	Min:	5000	
Sample A			
Sample B			
Sample C	1,57	✓	✓
Sample D	1,59	✓	✓

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page:

8.4 L4 - 12780102-1-M

TECT	Electrical C	Electrical Characteristics		Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
TEST	Inductance ⁽¹⁾ µH	Insul MOhm	Resistance	VIDITACION	Shock	Inductance (1)	Insul MOhm	Cycling	Overload
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	3,14	✓	✓	✓	✓	3,17	✓	✓	
Sample B	3,15	✓	✓	✓	✓	3,17	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWV	Insulation	Electrical Cha	aracteristics	Visual	DWV
TEST	Test		DWV	Resistance	Inductance ⁽¹⁾	Insul MOhm	Inspection	DVVV
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	3,18	✓	✓	✓
Sample B		✓	✓	✓	3,20	✓	✓	✓
Sample C								
Sample D								

12780102-1-M

TECT	Visual	DPA	Resistance	Electrical Cha	racteristics	Life Teek	Induced	DWV
TEST	Inspection		to Solvents	Inductance ⁽¹⁾	Insul MOhm	Life Test	Voltage	(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓							
Sample B	✓							
Sample C			✓	3,13	✓	✓	✓	✓
Sample D			✓	3,10	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	Visual		
1531	Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2	
LIMITO	Max;			
LIMITS	Min:	5000		
Sample A				
Sample B				
Sample C	3,21	✓	✓	
Sample D	3,15	✓	✓	

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page:

8.5 L5 - 12780103-1-M

TECT	Electrical C	Electrical Characteristics		Vilous Linus	Mechanical	Electrical Cha	aracteristics	Thermal	Overdeed
TEST	Inductance ⁽¹⁾	Insul MOhm	Resistance	Vibration	Shock	Inductance ⁽¹⁾	Insul MOhm	Cycling	Overload
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	3,54	✓	✓	✓	✓	3,59	✓	✓	
Sample B	3,60	✓	✓	✓	✓	3,61	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWW	Insulation	Electrical Cha	aracteristics	Visual	DWV
TEST	Test		DWV	Resistance	Inductance ⁽¹⁾	Insul MOhm	Inspection	DVVV
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	3,67	✓	✓	✓
Sample B		✓	✓	✓	3,63	✓	✓	✓
Sample C								
Sample D								

12780103-1-M

TECT	Visual	554	Resistance	Electrical Cha	racteristics	life Teet	Induced	DWV
TEST	Inspection	DPA	to Solvents	Inductance ⁽¹⁾	Insul MOhm	Life Test	Voltage	(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓							
Sample B	✓							
Sample C			✓	3,61	✓	✓	✓	✓
Sample D			✓	3,62	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	Visual	
1531	Inductance ⁽¹⁾ µH	Insul MOhm	Inspection
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2
	Max;		
LIMITS	Min:	5000	
Sample A			
Sample B			
Sample C	3,65	✓	✓
Sample D	3,65	✓	✓

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page:

8.6 L6 - 12780104-1-M

TEST	Electrical Characteristics		Moisture	Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
IESI	Inductance ⁽¹⁾	Insul MOhm	Resistance	Vibration	Shock	Inductance (1)	Insul MOhm	Cycling	Overload
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	4,58	✓	✓	✓	✓	4,64	✓	✓	
Sample B	4,72	✓	✓	✓	✓	4,80	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWW	Insulation	Electrical Cha	aracteristics	Visual	DWV
TEST	Test		DWV	Resistance	Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	4,69	✓	✓	✓
Sample B		✓	✓	✓	4,77	✓	✓	✓
Sample C								
Sample D								

12780104-1-M

TECT	Visual Inspection	554	Resistance	Electrical Cha	racteristics	life Teet	Induced Voltage	DWV
TEST		DPA	to Solvents	Inductance ⁽¹⁾	Insul MOhm	Life Test		(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓							
Sample B	✓							
Sample C			✓	4,55	✓	✓	✓	✓
Sample D			✓	4,68	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	Visual		
1531	Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2	
LIMITO	Max;			
LIMITS	Min:	5000		
Sample A				
Sample B				
Sample C	4,52	✓	✓	
Sample D	4,60	✓	✓	

Note 1: Units out of inductance during screening

Document No: 08699019-2

Page: 27 of 33

8.7 L7 - 12780105-1-M

TECT	Electrical Characteristics		Moisture	Villaga ki aya	Mechanical	Electrical Cha	racteristics	Thermal	Overdend
TEST	Inductance ⁽¹⁾ µH	Insul MOhm	Resistance	Vibration	Shock	Inductance (1)	Insul MOhm	Cycling	Overload
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	5,66	✓	✓	✓	✓	5,68	✓	✓	
Sample B	5,83	✓	✓	✓	✓	5,81	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWV	Insulation Resistance	Electrical Cha	aracteristics	Visual	DWV
TEST Test	· ·				Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
LIMITO					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	5,75	✓	✓	✓
Sample B		✓	✓	✓	5,88	✓	✓	✓
Sample C								
Sample D								

12780105-1-M

TECT Visual F		DDA	Resistance	Electrical Cha	racteristics	life Teet	Induced	DWV
TEST	Inspection	DPA	to Solvents	Inductance ⁽¹⁾ µH	Insul MOhm	Life Test	Voltage	(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓	✓						
Sample B	✓							
Sample C			✓	5,72	✓	√	√	✓
Sample D			✓	5,75	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	aracteristics	Visual	
1531	Inductance ⁽¹⁾ µH	Insul MOhm	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2	
	Max;			
LIMITS	Min:	5000		
Sample A				
Sample B				
Sample C	5,77	✓	✓	
Sample D	5,78	✓	√	

Note 1: Units out of inductance during screening

Document No: 08699019-2 29 of 33

Page:

8.8 L8 - 12780106-1-M

TECT	Electrical C	haracteristics	Moisture	Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
TEST	Inductance ⁽¹⁾ µH	Insul MOhm	Resistance	VIDITACION	Shock	Inductance ⁽¹⁾	Insul MOhm	Cycling	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	30,2	✓	✓	✓	✓	29,4	✓	✓	
Sample B	29,4	✓	✓	✓	✓	28,5	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWV	Insulation Resistance	Electrical Cha	aracteristics	Visual	DWV
TEST Verious Step	· ·				Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
LIMITO					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	28,4	✓	✓	✓
Sample B		✓	✓	✓	27,8	✓	✓	✓
Sample C								
Sample D								

12780106-1-M

TEST Visual DPA		Resistance	Electrical Cha	racteristics	Life Test	Induced	DWV	
IESI	Inspection	DPA	to Solvents	Inductance ⁽¹⁾	Insul MOhm	Life rest	Voltage	(reduced voltage)
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓	✓						
Sample B	✓							
Sample C			✓	29,8	✓	✓	✓	✓
Sample D			✓	29,5	✓	√	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	aracteristics	Visual	
1531	Inductance ⁽¹⁾ µH	Insul MOhm	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2	
	Max;			
LIMITS	Min:	5000		
Sample A				
Sample B				
Sample C	30,2	✓	✓	
Sample D	29,7	✓	√	

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page: 31 of 33

8.9 L9 - 12780107-1-M

TECT	Electrical C	haracteristics	Moisture	Vibration	Mechanical	Electrical Cha	aracteristics	Thermal	Overload
TEST	Inductance ⁽¹⁾ µH	Insul MOhm	Resistance	VIDITACION	Shock	Inductance ⁽¹⁾	Insul MOhm	Cycling	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,15	§5,9	§ 5,10	0,250V 100kHz N1(1-2)	500V	§ 5,17	§ 5,16
	Max;					Max;			
LIMITS	Min:	5000				Min:	5000		
Sample A	63,4	✓	✓	✓	✓	63,9	✓	✓	
Sample B	62,9	✓	✓	✓	✓	62,3	✓	✓	
Sample C									
Sample D									

TECT	Overload Step	Induced Voltage	DWV	Insulation Resistance	Electrical Cha	aracteristics	Visual	DWV
TEST Test	Test				Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	§ 5,16	§ 5,5 500V 10 pulses	500Vac 5s	RD6	0,250V 100kHz N1(1-2)	500V	§ 5,2	500Vac 60s
					Max;			
LIMITS					Min:	5000		
Sample A		✓	✓	✓	64,2	✓	✓	✓
Sample B		✓	✓	✓	63,2	✓	✓	✓
Sample C								
Sample D								

Document No: 08699019-2 Page: 32 of 33

12780107-1-M

TECT	TECT Visual DDA		Resistance to Solvents	Electrical Cha	racteristics	life Teek	Induced	DWV
TEST Inspection	DPA	Inductance ⁽¹⁾		Insul MOhm	Life Test	Voltage	(reduced voltage)	
CONDITIONS	§ 5,2	§ 5,13	§ 5,18	0,250V 100kHz N1(1-2)	500V	§ 5,11	§ 5,5	375Vac 5s
				Max; 27,3				
LIMITS				Min: 24,7	5000			
Sample A	✓	✓						
Sample B	✓							
Sample C			✓	61,9	✓	✓	✓	✓
Sample D			✓	62,2	✓	✓	✓	✓

Note 1: Units out of inductance during screening

TEST	Electrical Cha	aracteristics	Visual	
1531	Inductance ⁽¹⁾	Insul MOhm	Inspection	
CONDITIONS	0,250V 100kHz N1(1-2)	500V	§ 5,2	
LIMITO	Max;			
LIMITS	Min:	5000		
Sample A				
Sample B				
Sample C	62,5	✓	✓	
Sample D	63,0	✓	✓	

Note 1: Units out of inductance during screening

Document No: 08699019-2 Page: